Homogeneous varieties are those whose group of automorphisms acts transitively on them. In this paper we prove that any complete homogeneous variety splits in a unique way as a product of an abelian variety and a parabolic variety. This is obtained by proving a rigidity theorem for the parabolic subgroups of a linear group. Finally, using the results of Wenzel on the classification of parabolic subgroups of a linear group and the results of Demazure on the automorphisms of a flag variety, we obtain the classification of the parabolic varieties (in characteristic different from
2
,
3
2,3
). This, together with the moduli of abelian varieties, concludes the classification of the complete homogeneous varieties.