Koszul homology and extremal properties of Gin and Lex

Author:

Conca Aldo

Abstract

For every homogeneous ideal I I in a polynomial ring R R and for every p dim R p\leq \dim R we consider the Koszul homology H i ( p , R / I ) H_i(p,R/I) with respect to a sequence of p p of generic linear forms. The Koszul-Betti number β i j p ( R / I ) \beta _{ijp}(R/I) is, by definition, the dimension of the degree j j part of H i ( p , R / I ) H_i(p,R/I) . In characteristic 0 0 , we show that the Koszul-Betti numbers of any ideal I I are bounded above by those of the gin-revlex G i n ( I ) \mathrm {Gin}(I) of I I and also by those of the Lex-segment L e x ( I ) \mathrm {Lex}(I) of I I . We show that β i j p ( R / I ) = β i j p ( R / G i n ( I ) ) \beta _{ijp}(R/I)=\beta _{ijp}(R/\mathrm {Gin}(I)) iff I I is componentwise linear and that and β i j p ( R / I ) = β i j p ( R / L e x ( I ) ) \beta _{ijp}(R/I)=\beta _{ijp}(R/\mathrm {Lex}(I)) iff I I is Gotzmann. We also investigate the set G i n s ( I ) \mathrm {Gins}(I) of all the gin of I I and show that the Koszul-Betti numbers of any ideal in G i n s ( I ) \mathrm {Gins}(I) are bounded below by those of the gin-revlex of I I . On the other hand, we present examples showing that in general there is no J J is G i n s ( I ) \mathrm {Gins}(I) such that the Koszul-Betti numbers of any ideal in G i n s ( I ) \mathrm {Gins}(I) are bounded above by those of J J .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. Koszul cycles and Eliahou-Kervaire type resolutions;Aramova, Annetta;J. Algebra,1996

2. Almost regular sequences and Betti numbers;Aramova, Annetta;Amer. J. Math.,2000

3. Ideals with stable Betti numbers;Aramova, Annetta;Adv. Math.,2000

4. Upper bounds for the Betti numbers of a given Hilbert function;Bigatti, Anna Maria;Comm. Algebra,1993

5. D. Bayer, The division algorithm and the Hilbert scheme, Ph.D. Thesis, Harvard University, June 1982, 168 pages.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hyperplane restriction theorem and applications to reductions of ideals;Proceedings of the American Mathematical Society, Series B;2022-07-15

2. Powers of componentwise linear ideals: the Herzog–Hibi–Ohsugi conjecture and related problems;Research in the Mathematical Sciences;2022-04-07

3. A rigidity property of local cohomology modules;Proceedings of the American Mathematical Society;2017-06-16

4. The converse of a theorem by Bayer and Stillman;Advances in Applied Mathematics;2016-09

5. ON HILBERT FUNCTIONS OF GENERAL INTERSECTIONS OF IDEALS;Nagoya Mathematical Journal;2016-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3