The length of a curve in a space of curvature ≤𝐾

Author:

Dekster B. V.

Abstract

Let M be a compact ball in a Riemannian manifold with sectional curvatures K \leqslant K . Suppose its radius R 0 {R_0} is less than the injectivity radius at the center of M and R 0 > π / 2 K {R_0} > \pi /2\sqrt K if K > 0 K > 0 . Denote by M 0 {M_0} a circle of radius R 0 {R_0} in the plane of constant curvature K and by κ \kappa the curvature of M 0 \partial {M_0} . Then any curve in M with curvature χ > κ \leqslant \chi > \kappa is not longer than a circular arc of curvature χ \chi in M 0 {M_0} whose ends are opposite points of M 0 \partial {M_0} . Any curve in M with total curvature not exceeding some τ > 0 \tau > 0 ( τ = π / 2 \tau = \pi /2 if K κ 2 K \leqslant {\kappa ^2} ) is not longer than the longest curve in M 0 {M_0} with the same total curvature whose tangent vector rotates in a permanent direction.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference5 articles.

1. The isoperimetric problem and extimates of the length of a curve on a surface;Aleksandrov, A. D.;Trudy Mat. Inst. Steklov,1965

2. Estimates of the length of a curve;Dekster, B. V.;J. Differential Geometry,1977

3. Upper estimates of the length of a curve in a Riemannian manifold with boundary;Dekster, B. V.;J. Differential Geometry,1979

4. On complete open manifolds of positive curvature;Gromoll, Detlef;Ann. of Math. (2),1969

5. Bound for the length of a rectifiable curve in 𝑛-dimensional space.;Rešetnjak, Ju. G.;Sibirsk. Mat. \v{Z}.,1961

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3