The moment map of a Lie group representation

Author:

Wildberger N. J.

Abstract

Given an m × m m \times m Hadamard matrix one can extract m 2 {m^2} symmetric designs on m 1 m - 1 points each of which extends uniquely to a 3 3 -design. Further, when m m is a square, certain Hadamard matrices yield symmetric designs on m m points. We study these, and other classes of designs associated with Hadamard matrices, using the tools of algebraic coding theory and the customary association of linear codes with designs. This leads naturally to the notion, defined for any prime p p , of p p -equivalence for Hadamard matrices for which the standard equivalence of Hadamard matrices is, in general, a refinement: for example, the sixty 24 × 24 24 \times 24 matrices fall into only six 2 2 -equivalence classes. In the 16 × 16 16 \times 16 case, 2 2 -equivalence is identical to the standard equivalence, but our results illuminate this case also, explaining why only the Sylvester matrix can be obtained from a difference set in an elementary abelian 2 2 -group, why two of the matrices cannot be obtained from a symmetric design on 16 16 points, and how the various designs may be viewed through the lens of the four-dimensional affine space over the two-element field.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference42 articles.

1. On the theory of designs;Assmus, E. F., Jr.,1989

2. Affine and projective planes;Assmus, E. F., Jr.;Discrete Math.,1990

3. Translation planes and derivation sets;Assmus, E. F., Jr.;J. Geom.,1990

4. The four known biplanes with 𝑘=11;Salwach, Chester J.;Internat. J. Math. Math. Sci.,1979

5. Even order inversive planes, generalized quadrangles and codes;Bagchi, Bhaskar;Geom. Dedicata,1987

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3