We consider the eigenvalue problem:
−
Δ
u
−
q
u
=
λ
ω
u
,
u
∈
H
˙
1
,
2
(
Ω
)
- \Delta u - qu = \lambda \omega u,u \in \dot {H}^{1,2}(\Omega )
, in a smooth bounded domain
Ω
⊂
R
n
\Omega \subset {{\mathbf {R}}^n}
. We allow
−
Δ
−
q
- \Delta - q
to have negative spectrum and assume
ω
≥
0
\omega \geq 0
in
Ω
,
ω
≡
0
\Omega ,\omega \equiv 0
in a subdomain of
Ω
\Omega
. Under suitable regularity conditions, we establish several results for the spectrum of this problem. In particular, we give: a min.max. formula for
λ
\lambda
; a precise estimate on the number of negative
λ
\lambda
; an estimate for the location of negative
λ
\lambda
. An example concludes the paper.