Sur certaines singularités d’hypersurfaces 𝐼𝐼

Author:

Barlet Daniel

Abstract

The aim of the present article is to construct analytic invariants for a germ of a holomorphic function having a one-dimensional critical locus S S . This is done for a large class of such germs containing for instance any quasi-homogeneous germ at the origin. More precisely, aside from the Brieskorn ( a , b ) (a,b) -module at the origin and a (locally constant along S := S { 0 } S^* : = S \setminus \{0\} ) sheaf H n \mathcal {H}^n of ( a , b ) (a,b) -modules associated with the transversal hypersurface singularities along each connected component of S S^* , we construct also ( a , b ) (a,b) -modules “with supports” E c E_c and E c S E’_{c \cap \, S} .

An interesting consequence of the local study along S S^* is the corollary showing that for a germ with an isolated singularity, the largest sub- ( a , b ) (a,b) -module having a simple pole in its Brieskorn- ( a , b ) (a,b) -module is independent of the choice of a reduced equation for the corresponding hypersurface germ.

We also give precise relations between these various ( a , b ) (a,b) -modules via an exact commutative diagram. This is an ( a , b ) (a,b) -linear version of the tangling phenomenon for consecutive strata we have previously studied in the “topological” setting for the localized Gauss-Manin system of f f .

Finally we show that in our situation there exists a non-degenerate ( a , b ) (a,b) -sesquilinear pairing \[ h : E × E c S | Ξ | 2 h : E \times E’_{c\,\cap \, S} \longrightarrow \vert \Xi ’ \vert ^2 \] where | Ξ | 2 \vert \Xi ’ \vert ^2 is the space of formal asymptotic expansions at the origin for fiber integrals. This generalizes the canonical hermitian form defined in 1985 for the isolated singularity case (for the ( a , b ) (a,b) -module version see the recent 2005 paper). Its topological analogue (for the eigenvalue 1 1 of the monodromy) is the non-degenerate sesquilinear pairing \[ h : H c S n ( F , C ) = 1 × H n ( F , C ) = 1 C h : H^n_{c\,\cap \,S}(F, \mathbb {C})_{=1} \times H^n(F, \mathbb {C})_{=1} \to \mathbb {C} \] defined in an earlier paper for an arbitrary germ with a one-dimensional critical locus. Then we show this sesquilinear pairing is related to the non-degenerate sesquilinear pairing introduced on the sheaf H n \mathcal {H}^n via the canonical Hermitian form of the transversal hypersurface singularities.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference22 articles.

1. Développement asymptotique des fonctions obtenues par intégration sur les fibres;Barlet, D.;Invent. Math.,1982

2. Forme hermitienne canonique sur la cohomologie de la fibre de Milnor d’une hypersurface à singularité isolée;Barlet, D.;Invent. Math.,1985

3. Interaction de strates consécutives pour les cycles évanescents;Barlet, Daniel;Ann. Sci. \'{E}cole Norm. Sup. (4),1991

4. Theory of (𝑎,𝑏)-modules. I;Barlet, Daniel,1993

5. Théorie des (𝑎,𝑏)-modules. II. Extensions;Barlet, D.,1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The theme of a vanishing period;Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg;2014-05-28

2. Oblique Polar Lines of ∫ X |f|2λ|g|2μ□;Complex Analysis;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3