Endotrivial modules for finite groups via homotopy theory

Author:

Grodal Jesper

Abstract

Classifying endotrivial k G kG -modules, i.e., elements of the Picard group of the stable module category for an arbitrary finite group G G , has been a long-running quest. By deep work of Dade, Alperin, Carlson, Thévenaz, and others, it has been reduced to understanding the subgroup consisting of modular representations that split as the trivial module k k direct sum a projective module when restricted to a Sylow p p -subgroup. In this paper we identify this subgroup as the first cohomology group of the orbit category on non-trivial p p -subgroups with values in the units k × k^\times , viewed as a constant coefficient system. We then use homotopical techniques to give a number of formulas for this group in terms of the abelianization of normalizers and centralizers in G G , in particular verifying the Carlson–Thévenaz conjecture—this reduces the calculation of this group to algorithmic calculations in local group theory rather than representation theory. We also provide strong restrictions on when such representations of dimension greater than one can occur, in terms of the p p -subgroup complex and p p -fusion systems. We immediately recover and extend a large number of computational results in the literature, and further illustrate the computational potential by calculating the group in other sample new cases, e.g., for the Monster at all primes.

Funder

Danmarks Grundforskningsfond

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference121 articles.

1. London Mathematical Society Lecture Note Series;Aschbacher, Michael,2011

2. Sylow intersections and fusion;Alperin, J. L.;J. Algebra,1967

3. Weights for finite groups;Alperin, J. L.,1987

4. A construction of endo-permutation modules;Alperin, J. L.;J. Group Theory,2001

5. Mathematical Surveys and Monographs;Aschbacher, Michael,2011

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Picard Group of the Stable Module Category for Infinite Groups;International Mathematics Research Notices;2024-06-12

2. LHS-spectral sequences for regular extensions of categories;Journal of Homotopy and Related Structures;2024-01-20

3. A Tour of $p$-Permutation Modules and Related Classes of Modules;Jahresbericht der Deutschen Mathematiker-Vereinigung;2023-02-07

4. Higher limits over the fusion orbit category;Advances in Mathematics;2022-09

5. Torsion free endotrivial modules for finite groups of Lie type;Pacific Journal of Mathematics;2022-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3