W*–superrigidity for Bernoulli actions of property (T) groups

Author:

Ioana Adrian

Abstract

We consider group measure space II 1 _{1} factors M = L ( X ) Γ M=L^{\infty }(X)\rtimes \Gamma arising from Bernoulli actions of ICC property (T) groups Γ \Gamma (more generally, of groups Γ \Gamma containing an infinite normal subgroup with the relative property (T)) and prove a rigidity result for * –homomorphisms θ : M M ¯ M \theta :M\rightarrow M\overline {\otimes }M .

We deduce that the action Γ X \Gamma \curvearrowright X is W ^{*} –superrigid, i.e. if Λ Y \Lambda \curvearrowright Y is any free, ergodic, measure preserving action such that the factors M = L ( X ) Γ M=L^{\infty }(X)\rtimes \Gamma and L ( Y ) Λ L^{\infty }(Y)\rtimes \Lambda are isomorphic, then the actions Γ X \Gamma \curvearrowright X and Λ Y \Lambda \curvearrowright Y must be conjugate.

Moreover, we show that if p M { 1 } p\in M\setminus \{1\} is a projection, then p M p pMp does not admit a group measure space decomposition nor a group von Neumann algebra decomposition (the latter under the additional assumption that Γ \Gamma is torsion free).

We also prove a rigidity result for * –homomorphisms θ : M M \theta :M\rightarrow M , this time for Γ \Gamma in a larger class of groups than above, now including products of non–amenable groups. For certain groups Γ \Gamma , e.g. Γ = F 2 × F 2 \Gamma =\mathbb {F}_{2}\times \mathbb {F}_{2} , we deduce that M M does not embed into p M p pMp , for any projection p M { 1 } p\in M\setminus \{1\} , and obtain a description of the endomorphism semigroup of M M .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference46 articles.

1. New Mathematical Monographs;Bekka, Bachir,2008

2. Graduate Studies in Mathematics;Brown, Nathanial P.,2008

3. Kazhdan constants for 𝑆𝐿(3,𝑍);Burger, M.;J. Reine Angew. Math.,1991

4. Sur la classification des facteurs de type 𝐼𝐼;Connes, Alain;C. R. Acad. Sci. Paris S\'{e}r. A-B,1975

5. A. Connes: Correspondences, handwritten notes, 1980.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3