Real analytic multi-parameter singular Radon transforms: Necessity of the Stein-Street condition

Author:

Zhang Lingxiao

Abstract

We study operators of the form T f ( x ) = ψ ( x ) f ( γ t ( x ) ) K ( t ) d t , \begin{equation*} Tf(x)= \psi (x) \int f(\gamma _t(x))K(t)\,dt, \end{equation*} where γ t ( x ) \gamma _t(x) is a real analytic function of ( t , x ) (t,x) mapping from a neighborhood of ( 0 , 0 ) (0,0) in R N × R n \mathbb {R}^N \times \mathbb {R}^n into R n \mathbb {R}^n satisfying γ 0 ( x ) x \gamma _0(x)\equiv x , ψ ( x ) C c ( R n ) \psi (x) \in C_c^\infty (\mathbb {R}^n) , and K ( t ) K(t) is a “multi-parameter singular kernel” with compact support in R N \mathbb {R}^N ; for example when K ( t ) K(t) is a product singular kernel. The celebrated work of Christ, Nagel, Stein, and Wainger studied such operators with smooth γ t ( x ) \gamma _t(x) , in the single-parameter case when K ( t ) K(t) is a Calderón-Zygmund kernel. Street and Stein generalized their work to the multi-parameter case, and gave sufficient conditions for the L p L^p -boundedness of such operators. This paper shows that when γ t ( x ) \gamma _t(x) is real analytic, the sufficient conditions of Street and Stein are also necessary for the L p L^p -boundedness of T T , for all such kernels K K .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference42 articles.

1. Endpoint Lebesgue estimates for weighted averages on polynomial curves;Christ, Michael;Amer. J. Math.,2020

2. Multiparameter singular integrals and maximal operators along flat surfaces;Cho, Yong-Kum;Rev. Mat. Iberoam.,2008

3. Triple Hilbert transforms along polynomial surfaces;Cho, Yong-Kum;Integral Equations Operator Theory,2009

4. Singular and maximal Radon transforms: analysis and geometry;Christ, Michael;Ann. of Math. (2),1999

5. Double Hilbert transforms along polynomial surfaces in 𝐑³;Carbery, Anthony;Duke Math. J.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3