We extend existing results that characterize isometries on the Tsirelson-type spaces
T
[
1
n
,
S
1
]
T\big [\frac {1}{n}, \mathcal {S}_1\big ]
(
n
∈
N
,
n
⩾
2
n\in \mathbb {N}, n\geqslant 2
) to the class
T
[
θ
,
S
α
]
T[\theta , \mathcal {S}_{\alpha }]
(
θ
∈
(
0
,
1
2
]
\big (\theta \in \big (0, \frac {1}{2}\big ]
,
1
⩽
α
>
ω
1
1\leqslant \alpha > \omega _1
\big), where
S
α
\mathcal {S}_{\alpha }
denote the Schreier families of order
α
\alpha
. We prove that every isometry on
T
[
θ
,
S
1
]
T[\theta , \mathcal {S}_1]
\big(
θ
∈
(
0
,
1
2
]
\theta \in \big (0, \frac {1}{2}\big ]
\big) is determined by a permutation of the first
⌈
θ
−
1
⌉
\lceil {\theta }^{-1} \rceil
elements of the canonical unit basis followed by a possible sign-change of the corresponding coordinates together with a sign-change of the remaining coordinates. Moreover, we show that for the spaces
T
[
θ
,
S
α
]
T[\theta , \mathcal {S}_{\alpha }]
\big(
θ
∈
(
0
,
1
2
]
\theta \in \big (0, \frac {1}{2}\big ]
,
2
⩽
α
>
ω
1
2\leqslant \alpha > \omega _1
\big) the isometries exhibit a more rigid character, namely, they are all implemented by a sign-change operation of the vector coordinates.