An inner product on Adelic measures with applications to the Arakelov–Zhang pairing

Author:

Oberly Peter

Abstract

We define an inner product on a vector space of adelic measures over a number field. We find that the norm induced by this inner product governs weak convergence at each place of K K . The canonical adelic measure associated to a rational map is in this vector space, and the square of the norm of the difference of two such adelic measures is the Arakelov–Zhang pairing from arithmetic dynamics. We find that the norm of a canonical adelic measure associated to a rational map is commensurate with a height on the space of rational functions with fixed degree. As a consequence, we show that the Arakelov–Zhang pairing of two rational maps f f and g g is, when holding g g fixed, commensurate with the height of f f .

Publisher

American Mathematical Society (AMS)

Reference25 articles.

1. Mathematical Surveys and Monographs;Baker, Matthew,2010

2. Canonical heights, transfinite diameters, and polynomial dynamics;Baker, Matthew H.;J. Reine Angew. Math.,2005

3. Equidistribution of small points, rational dynamics, and potential theory;Baker, Matthew H.;Ann. Inst. Fourier (Grenoble),2006

4. Graduate Studies in Mathematics;Benedetto, Robert L.,2019

5. The Arakelov-Zhang pairing and Julia sets;Bridy, Andrew;Proc. Amer. Math. Soc.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3