The solution of integral equations in Chebyshev series
Author:
Abstract
If the solution of an integral equation can be expanded in the form of a Chebyshev series, the equation can be transformed into an infinite set of algebraic equations in which the unknowns are the coefficients of the Chebyshev series. The algebraic equations are solved by standard iterative procedures, in which it is not necessary to determine beforehand how many coefficients are significant. The method is applicable to equations of either Fredholm or Volterra types.
Publisher
American Mathematical Society (AMS)
Subject
Applied Mathematics,Computational Mathematics,Algebra and Number Theory
Link
http://www.ams.org/mcom/1969-23-108/S0025-5718-1969-0260224-4/S0025-5718-1969-0260224-4.pdf
Reference5 articles.
1. The numerical solution of integral equations using Chebyshev polynomials;Elliott, David;J. Austral. Math. Soc.,1959
2. Chebyshev series method for the numerical solution of Fredholm integral equations;Elliott, David;Comput. J.,1963
3. The solution of linear differential equations in Chebyshev series;Scraton, R. E.;Comput. J.,1965
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fast Nonlinear Generalized Inversion of Gravity Data with Application to the Three-Dimensional Crustal Density Structure of Sichuan Basin, Southwest China;Pure and Applied Geophysics;2017-07-31
2. An analytical solution to applied mathematics-related Love’s equation using the Boubaker polynomials expansion scheme;Journal of the Franklin Institute;2010-11
3. A NUMERICAL METHOD FOR SCATTERING FROM ACOUSTICALLY SOFT AND HARD THIN BODIES IN TWO DIMENSIONS;Journal of Sound and Vibration;2002-03
4. Evaluation of 2-D Green's boundary formula and its normal derivative using Legendre polynomials, with an application to acoustic scattering problems;International Journal for Numerical Methods in Engineering;2001
5. Computing integral transforms and solving integral equations using Chebyshev polynomial approximations;Journal of Computational and Applied Mathematics;2000-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3