The heterotic 𝐺₂ system on contact Calabi–Yau 7-manifolds

Author:

Lotay Jason,Sá Earp Henrique

Abstract

We obtain non-trivial approximate solutions to the heterotic G 2 \mathrm {G}_2 system on the total spaces of non-trivial circle bundles over Calabi–Yau 3 3 -orbifolds, which satisfy the equations up to an arbitrarily small error, by adjusting the size of the S 1 S^1 fibres in proportion to a power of the string constant α \alpha ’ . Each approximate solution provides a cocalibrated G 2 \mathrm {G}_2 -structure, the torsion of which realises a non-trivial scalar field, a constant (trivial) dilaton field and an H H -flux with non-trivial Chern–Simons defect. The approximate solutions also include a connection on the tangent bundle which, together with a non-flat G 2 \mathrm {G}_2 -instanton induced from the horizontal Calabi–Yau metric, satisfy the anomaly-free condition, also known as the heterotic Bianchi identity. The approximate solutions fail to be genuine solutions solely because the connections on the tangent bundle are only G 2 \mathrm {G}_2 -instantons up to higher order corrections in α \alpha ’ .

Funder

Royal Society

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference25 articles.

1. Oxford Mathematical Monographs;Boyer, Charles P.,2008

2. Vector bundles on Sasakian manifolds;Biswas, Indranil;Adv. Theor. Math. Phys.,2010

3. Gauge theory and 𝐺₂-geometry on Calabi-Yau links;Calvo-Andrade, O.;Rev. Mat. Iberoam.,2020

4. Moduli of 𝐺₂-structures and the Strominger system in dimension 7;Clarke, A.,2016

5. Calabi-Yau manifolds in weighted 𝑃₄;Candelas, P.;Nuclear Phys. B,1990

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calabi–Yau links and machine learning;International Journal of Data Science in the Mathematical Sciences;2024-06

2. Machine learning Sasakian and G2 topology on contact Calabi-Yau 7-manifolds;Physics Letters B;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3