Riemann’s zeta function and beyond

Author:

Gelbart Stephen,Miller Stephen

Abstract

In recent years L L -functions and their analytic properties have assumed a central role in number theory and automorphic forms. In this expository article, we describe the two major methods for proving the analytic continuation and functional equations of L L -functions: the method of integral representations, and the method of Fourier expansions of Eisenstein series. Special attention is paid to technical properties, such as boundedness in vertical strips; these are essential in applying the converse theorem, a powerful tool that uses analytic properties of L L -functions to establish cases of Langlands functoriality conjectures. We conclude by describing striking recent results which rest upon the analytic properties of L L -functions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference183 articles.

1. arthur James Arthur, The principle of functoriality, Bull. Amer. Math. Soc. (N.S.) 40 (2002), no. 1, 39–53 (electronic), Mathematical challenges of the 21st century (Los Angeles, CA, 2000).

2. Lectures on automorphic 𝐿-functions;Arthur, James,1991

3. BernsteinPCMI Joseph Bernstein, Meromorphic Continuation of Eisenstein Series, IAS/Park City Lecture Notes, Park City, Utah, 2002.

4. Bernstein-Gelbart Joseph Bernstein and Stephen Gelbart (eds.), An Introduction to the Langlands Program, Birkhauser, Boston, 2003.

5. Notes on elliptic curves. II;Birch, B. J.;J. Reine Angew. Math.,1965

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing S-duality in $$ \mathcal{N} $$ = 4 SYM & supergravity as SL(2, ℤ)-averaged strings;Journal of High Energy Physics;2022-08-19

2. An analogue of the Riemann Hypothesis via quantum walks;Quantum Studies: Mathematics and Foundations;2022-05-27

3. Zeta Functions and the Cosmos—A Basic Brief Review;Universe;2020-12-30

4. Twisting moduli for GL(2);Journal of Number Theory;2020-12

5. Converse theorems for automorphic distributions and Maass forms of level N;Research in Number Theory;2019-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3