Optimization of process parameters in micro milling of Ti4Al4Mo2Sn using nano Al2O3 additives based minimum quantity cooling lubrication

Author:

Nithiyanandam M.,Rahamathullah I.,Ashok Raj R.

Abstract

ABSTRACT. Aerospace and automotive industries employ Ti4Al4Mo2Sn material in many applications due to its properties of better strength to weight ratio and high corrosion resistance. Ti4Al4Mo2Sn finds itself difficult to cut materials due to its physical and chemical properties and is prone to more heat generation during machining. The more generation of heat affects the machined material surface quality and other related properties. In this investigation, the thermal conductivity and stability of Al2O3/Water based nanofluids are studied to select the best composition of nanofluid for transferring heat. The thermal conductivity and stability of the nanofluid for a duration of 30 days are computed by employing the KD2 thermal property meter and pH meter, respectively. Thermal conductivity and stability of the Water/4.5 vol.% Al2O3 nanofluid are found to be better than other combination of nanofluids. In the present study, optimizing the micro milling process parameters on Ti4Al4Mo2Sn material with Minimum quantity cooling lubrication (MQL) is focused. The input parameters selected for this micro milling process are spindle speed, feed rate, depth of cut and Water/4.5vol.% Al2O3 nanofluid and the output parameters selected are cutting forces in X(Fx) and Y(Fy) directions, tool wear rate (TWR) and surface roughness (SR). The optimization is done with the help of grey relational analysis (GRA) by using L9 Orthogonal Array (OA) Taguchi design. The obtained sequence of influencing parameters are feed rate per tooth, Al2O3nanofluid, spindle speed and depth of cut. The percentage of grey relational grade (GRG) for prediction and experimental is 0.721 and 0.957. The percentage of improvement of GRG is 12.46.   KEY WORDS: Ti4Al4Mo2Sn, Al2O3, Thermal conductivity, Grey relational analysis, Grey relational grade   Bull. Chem. Soc. Ethiop. 2022, 36(2), 339-351.                                                                DOI: https://dx.doi.org/10.4314/bcse.v36i2.8

Publisher

African Journals Online (AJOL)

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanofluids application in machining: a comprehensive review;The International Journal of Advanced Manufacturing Technology;2023-01-04

2. Optimization of NaCl based spray corrosion test process parameters of heat treated hybrid metal matrix composites;Bulletin of the Chemical Society of Ethiopia;2022-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3