A simple calibration of Hobo 4 channel analogue dataloggers for use with Watermark 253–L soil water potential sensors

Author:

Kaptein Nkosinathi D,Titshall Louis W

Abstract

The combination of granular matrix sensors with a Hobo 4 analogue channel datalogger provides a relatively inexpensive continuous soil water monitoring system. However, the datalogger excites all 4 channels concomitantly as it reads the sensor measurement of each channel in sequence. This results in localised electrolysis causing measurement bias error in Channels 2, 3 and 4. To evaluate this channel bias, Watermark granular matrix sensors were connected to Hobo 4 channel dataloggers to measure electrical conductance of the soil. This study formed part of a larger study aimed at understanding water use by Eucalyptus plantations at different soil depths. The measured soil conductivity was calibrated against the gravimetric method in soil derived from Natal Group Sandstone and Dwyka Tillite that occur in southern KwaZulu-Natal. The channels of a Hobo 4 channel datalogger were successfully calibrated against the gravimetric method for both soil types (R2 > 0.92). The voltage measurements of each channel increased in the order 1 < 2 < 3 < 4 for both soil types at a soil water content range of 12 to 44% and 6 to 46% for Dwyka Tillite and Natal Group Sandstone soils, respectively. Channel measurements were similar at soil water content ranges below 12 and 6% for tillite and sandstone soils, respectively. The study showed that Channels 2, 3 and 4 of the Hobo 4 channel datalogger are affected by electrolysis. If this analogue datalogger is used with these types of sensors, these channels need to be calibrated back to Channel 1.

Publisher

Academy of Science of South Africa

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3