In silico screening of potentially bioactive-anti-functional dyspepsia constituents of Magnoliae officinalis Cortex based on molecular docking and network pharmacology

Author:

He Jun,Wang Longjing,Lv Guanghua,Wei Yingfang,Yang Meng,Bai Yusha,Jiang Yunbin,Long Fei

Abstract

Purpose: To screen for bioactive anti-functional dyspepsia compounds from Magnoliae officinalis Cortex (Hou Po) and to identify the mechanism(s) of action involved.Methods: The compounds of Hou Po were collected from the literature. The related target proteins were identified from DrugBank. Through  “Libdock” module of Discovery Studio 3.5, the compounds were matched with related target proteins. Taking the Libdock score of the original ligand with target protein as standard, components with higher scores than this standard were considered as potential bioactive compounds. Based on Cytoscape software, the interaction networks of the bioactive compound-target protein complexes were mapped. On the other hand, the online DAVID database was used to analyze the GO enrichment and KEGG pathway of each target.Results: A total of 199 chemical constituents and 13 correlated target proteins were obtained. One hundred and thirty-nine (139) potential bioactive constituents were acquired based on molecular docking. Thirty-one (31) bioactive compounds were selected based on degree values in networkanalysis. “Palmitone” and “magnolignan G” which had the highest degree values were considered promising and leading compounds. The result of gene enrichment analysis showed that the bioactive compounds exerted their effects mainly via “neuroactive ligand-receptor interaction” pathway and “Cholinergic synapse” pathways.Conclusion: Based on molecular docking and network pharmacology technique, the material basis for the use of Hou Po in the treatment of FD has been revealed. This finding provides a useful guide in the development of Hou Po-based anti-FD drugs. Keywords: Magnolia officinalis, Hou Po, Molecular docking, Functional dyspepsia, Network pharmacology

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3