Estimating milk production and energy-use efficiency of pasture-grazed Holstein and Jersey cows using mathematical models

Author:

Bangani N.M.,Muller C.J.C.,Dzama K.,Cruywagen C.W.C,Nherera-Chokuda F.V.,Imbayarwo-Chikosi V.E.

Abstract

The efficiency of feed use for milk production is critical for sustainable and profitable pasture-based dairy systems. The aim of this study was to estimate milk production and energy-use efficiencies of pasture-grazed Holstein and Jersey cows. Lactation records of 122 Holstein and 99 Jersey cows varying from parities 1 to 6 that were managed under similar feeding and environmental conditions were collected from 2005 to 2014. Feed intake and nutrient requirements of the cows were calculated using the National Research Council and the Cornell Net Carbohydrate and Protein System equations. Holsteins had a higher milk yield/kg dry matter intake (1.36±0.01 vs. 1.27±0.01 kg), whereas Jerseys had higher efficiencies in milk fat (52.4±0.3 vs. 58.4±0.4 g), milk protein (42.7±0.3 vs. 45.1±0.3 g), and energy-corrected milk (1.30±0.01 vs. 1.36±0.01 kg) per kg dry matter intake. Jersey cows also had a higher dry matter intake/kg body weight (3.13±0.02 vs. 3.51±0.02%). During transition and early lactation stages, Holstein and Jersey cows were in negative energy balance for 102.4±2.3 vs. 74.2±2.3 days, with the lowest energy reserves (-53.9 MJ vs. -39.7 MJ) reached at 22.3±0.9 vs. 24.6±0.9 days post-calving, respectively. Compared to Holsteins, Jersey cows used proportionally less net energy intake to produce 100 g milk fat (13.7±0.10 vs. 12.5±0.10), 100 g milk protein (16.7±0.14 vs.16.2±0.15) and a 1-kg energy-corrected milk (5.52±0.04 vs. 5.35±0.04), making them a better breed for pasture-based dairy systems as they possess more production and feed-use efficiency traits, which are desirable in pasture-based production systems.

Publisher

African Journals Online (AJOL)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3