Synthesis, spectroscopic and biological characterizations of platinum(IV), ruthenium(III) and iridium(III) theophylline complexes

Author:

A. El-Habeeb Abeer,S. Refat Moamen

Abstract

This study used micro-analyses, (FTIR, UV-Vis) spectra, magnetic, thermogravimetric, X-ray powder diffraction (XRD) patterns, and transmittance electron microscopy (TEM) techniques to characterize three synthesized theophylline (TPH) complexes with ruthenium(III), platinum(IV), and iridium(III) metal ions. The metal ions indicated above were found to align with the TPH drug chelate as a mono-dentate ligand via the deprotonated NH group at the nitrogen atom position N7, as verified by FTIR measurements. Additionally, the complexes conductivity and magnetic susceptibility were examined. The octahedral geometry for the synthesized complexes was proposed by the current data. Except for the iridium(III) complex, which has a non-electrolytic nature due to the presence of a chlorine atom inside the chelation sphere, the molar conductivity of the complexes in DMSO solution was electrolyte in nature. Theophylline complexes with a (metal: ligand) stoichiometry of 1:2 were produced. The TPH complexes have also been tested in vitro against G(+) bacteria (Bacillus subtilis and Staphylococcus Aureus) and G(-) bacteria (Pseudomonas aeruginosa and Escherichia coli) to evaluate their antibacterial efficacy. Human breast and liver cancer cell lines were used as a test for the TPH complexes in vitro anti-cancer properties. KEY WORDS: Theophylline, Metal ions, Chelation, Octahedral, Spectral analysis, Nano-particles, Biological evaluation Bull. Chem. Soc. Ethiop. 2024, 38(3), 725-738.                                                               DOI: https://dx.doi.org/10.4314/bcse.v38i3.14                                                     

Publisher

African Journals Online (AJOL)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3