Author:
J. Golden Renjith Nimal R.,F. Melvin Jose D.,Balasubramanian K.,Sunil J.
Abstract
This work uses the sonochemical method to represent synthesized cobalt oxide nanoparticles (Co3O4) and analysed using different techniques. The X-ray diffraction analysis (XRD) and Fourier-transform infrared spectroscopy (FTIR) examinations of the synthesized nanoparticles confirmed their cubic structure and average crystallite size of 21.3 nm. The spherical surface shape and presence of components with a particle size of 25.3 nm were revealed. Scanning probe microscopy (SPM) methods analysed the Co3O4 coated plates' surface characteristics, including roughness and topographical ideas. An aqueous electrolyte medium (6 M KOH) was used to investigate the electrochemical corrosion behaviour of Co3O4-coated plates. According to the Tafel plot, coating Zn plates with a high surface area and mesoporous Co3O4 in KOH electrolytes greatly reduced the corrosion of the plates. The coated plates are thermally treated up to 600℃. The temperature-dependent anticorrosive properties of Co3O4 NPs are evaluated.
KEY WORDS: Co3O4, Zn plate, Tafel plot, Linear sweep voltammetry, Anti-corrosive performance, Nanoindentation
Bull. Chem. Soc. Ethiop. 2024, 38(1), 241-253. DOI: https://dx.doi.org/10.4314/bcse.v38i1.18
Publisher
African Journals Online (AJOL)