Angelica sinensis polysaccharide ameliorates myocardial ischemia-reperfusion injury in rats by inhibiting TLR4/NF-κB

Author:

Ye Jianhua,Shen Shenghui,Dai Xialing,Zhang Tianjie

Abstract

Purpose: To evaluate the ameliorative effect of Angelica sinensis polysaccharide (ASP) in myocardial ischemia-reperfusion injury (MIRI) rats through Toll-like receptor 4 (TLR4)/Nuclear factor κB (NF-κB) pathway. Methods: The MIRI rat model was established. Sprague-Dawley rats were randomized to sham, MIRI, and ASP low-dose (50 mg/kg) and high-dose (100 mg/kg) groups, and a model of hypoxia-reoxygenation (H/R) injury was established. In in vitro studies, H/R cardiomycetes (derived from neonatal cell culture) were randomized to control, H/R, H/R + ASP low dose (5 μg/mL), H/R + ASP high dose (10 μg/mL), and ASP high dose + TLR4 activator groups. Results: After intragastric administration of ASP for 4 consecutive weeks, creatine kinase isoenzyme (CK-MB) and lactate dehydrogenase (LDH) were reduced after ASP treatment in MIRI rats (p < 0.05). Both in vivo and in vitro, ASP reduced TNF-α, IL-6, and IL-1β expressions (p < 0.05), and alleviated inflammatory response. Apoptosis was inhibited by ASP, which also increased Bcl2, reduced Bax and cleaved caspase-3 expressions, while TLR-4, p-IκBα, and p-p65 were decreased. Conclusion: The cardioprotective effect of ASP on MIRI results in the inhibition of TLR4/NF-κB pathway. Thus, this study broadens the current body of knowledge on the pharmacological prevention of MIRI and the therapeutic potential of ASP.

Publisher

African Journals Online (AJOL)

Subject

Pharmacology (medical),Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3