Influence of living shoreline elements on wave run up elevations

Author:

Ellenson Ashley1,Revell David1,Jamieson Matt1,Blakesley Sam1

Affiliation:

1. Integral Consulting Inc.

Abstract

Nature-based coastal protection, also known as engineering with nature or living shorelines, is becoming increasingly popular due to its dual benefits of reducing coastal flooding and providing ecological and recreational opportunities. In many coastal areas experiencing chronic erosion, changes in sediment supply, composition, and grain size are significant contributing factors to shoreline recession. One living shoreline strategy to consider includes the application of cobbles over more traditional sand nourishments. On sandy beaches that experience high-energy wave conditions, the introduction (or reintroduction) of cobbles can mitigate backshore erosion. Cobble-backed beaches have been found to mitigate the effect of coastal erosion and flooding in laboratory settings and field observations, and they have recently been piloted in locations such as Cape Lookout State Park in Tillamook County, Oregon, and Surfers Point in the City of Ventura, California. However, there are no formal engineering guidelines stipulating the calculation of wave run-up on cobble-backed beaches. This study applies three different wave run-up equations on a living shoreline design (i.e. mixed sand and cobble berm-backed beach) in Malibu, California, and compares the predicted run-up levels with existing condition flood levels for typical and eroded conditions. The different wave run-up equations were designed for cobbles only, revetments, and composite beaches, respectively, where the composite beach equation was most applicable to project design. For typical beach conditions (higher levels of sediment accretion resulting in shallower beach face and berm slopes), all three equations showed a reduction in wave run-up values. When applied to worst-case conditions (i.e. scoured by a creek channel and steeper fronting beach slopes), the equation most applicable to the design showed the highest reduction of total water levels. A sensitivity analysis found that the cobble-backed beach equation predicted the most consistent values of run-up (run-up values changed the least), even when input parameters (slope and water depth) changed. This study shows that cobblebacked beaches hold promise to mitigate coastal flooding in appropriate areas, in addition to being a natural solution for areas experiencing erosion. This study also points to the need for more studies and field observations to validate the run-up levels determined here.

Publisher

American Shore and Beach Preservation Association

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3