High Performance Adaptive Active Harmonic Filter Design for Non-Linear LED Loads

Author:

Sonmezocak Temel1,Akar Onur1,Terzi Umit Kemalettin2

Affiliation:

1. Doğuş University

2. Marmara University

Abstract

Today, illumination systems use approximately 1/3 of the electrical energy produced. For this reason, new technologies constantly increase energy efficacy in illumination technology. Consequently, the use of LED type light sources gets more widespread with low power electronics-based versions. The most important advantage of this type of systems has high luminous efficacy. However, since electronic systems have non-linear static loads, they cause unwanted harmonics in electrical distribution systems. Harmonics affect the operational safety as they cause unnecessary heating of the conductors in the electrical network. It also adversely affects the measuring and control systems of the buyers and so decreases the energy performance. In this study, an adaptive Butterworth low pass active harmonic filtermodel that can cut all current/voltage harmonics outside the operating frequency of different types of LED driver light sources is designed. In addition, harmonic analysis of different LED driver systems is performed experimentally by considering the total harmonic distortions (THD,%). In this way, harmonic components and (THD) values of different LED systems are obtained. These harmonic components obtained is filtered with the designed filter structure and the effects of the filter structure at each filtering degree on the harmonic components and THD were investigated. In this way, the designed filter is proved to be an adaptive model that can be adjusted automatically for different types of LED systems.

Publisher

Redakcia Zhurnala Svetotekhnika LLC

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3