A New Look at Formulation of Charge Storage in Capacitors and Application to Classical Capacitor and Fractional Capacitor Theory

Author:

Das Shantanu

Abstract

In this study, we revisit the concept of classical capacitor theory-and derive possible new explanations of the definition charge stored in a capacitor. We introduce the capacity function with respect to time to describe the charge storage in a classical capacitor and a fractional capacitor. Here we will describe that charge stored at any time in a capacitor as ‘convolution integral’ of defined capacity function of a capacitor and voltage stress across it which comes from causality principle. This approach, however, is different from the conventional method, where we multiply the capacity and voltage functions to obtain charge stored. This new concept is in line with the observation of charge stored as a step function and the relaxation current in form of impulse function for ‘ideal geometrical capacitor’ of constant capacity; when an uncharged capacitor is impressed with a constant voltage stress.  Also this new formulation is valid for a power-law decay current that is given by ‘universal dielectric relaxation law’ called as ‘Curie von-Schweidler law’, when an uncharged capacitor is impressed with a constant voltage stress. This universal dielectric relaxation law gives rise to fractional derivative relating voltage stress and relaxation current that is formulation of ‘fractional capacitor’. A ‘fractional capacitor’ we will discuss with this new concept of redefining the charge store definition i.e. via this ‘convolution integral’ approach, and obtain the loss tangent value. We will also show how for a ‘fractional capacitor’ by use of ‘fractional integration’ we can convert the fractional capacity a constant that is in terms of fractional units (Farads per sec to the power of fractional number); to normal units of Farads. From the defined capacity function, we will also derive integrated capacity of capacitor. We will also give a possible physical explanation by taking example of porous and non-porous pitchers of constant volume holding water and thus, explaining the various interesting aspects of classical capacitor and a fractional capacitor that we arrive with this new formulation; and also relates to a capacitor breakdown theory-due to electrostatic forces.  

Publisher

Sciencedomain International

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Look at the Capacitor Theory;Fractal and Fractional;2023-01-12

2. Nonlinear charge-voltage relationship in constant phase element;AEU - International Journal of Electronics and Communications;2020-04

3. A generalized Drude–Lorentz model for refractive index behavior of tellurite glasses;Journal of Materials Science: Materials in Electronics;2019-06-22

4. Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels;The European Physical Journal Plus;2019-06

5. Response functions in linear viscoelastic constitutive equations and related fractional operators;Mathematical Modelling of Natural Phenomena;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3