GIS-Based Analytical Hierarchy Process Modelling and Mapping of Erosion Vulnerability in the Coastal Areas of Rivers State, Nigeria

Author:

Igbokwe, J.I .,Obasohan, J.N .,Igbokwe, E.C .

Abstract

The problem of coastal erosion in rivers State Nigeria is a significant issue that has far-reaching consequences for the environment and local communities. Despite the efforts of previous research there remains a lack of comprehensive understanding of the factors contributing to erosion vulnerability and their relative importance, hindering effective decision-making and management practices aimed at mitigating the effects of coastal erosion in Rivers State. Therefore, this study aimed at a GIS-based analytical hierarchy process modeling and mapping of coastal erosion vulnerability in Rivers State, Nigeria. The objectives are to establish and classify the geophysical factors according to the levels of coastal erosion risk, calculate the reliability index of the classified geophysical factors, determine the coastal vulnerable areas across Rivers State using analytical hierarchical process and to produce a coastal vulnerability index map defining the extent of erosion vulnerability in Rivers State. The methodology comprises of the acquisition of primary and secondary data, image pre-processing, image classification, DEM processing, classification and standardization of factors, development of pairwise comparism, and weighted linear combination analysis. The study revealed three distinct coastal erosion vulnerability zones: high, moderate, and low vulnerability. The high vulnerability zone encompassed a total expanse of 545.29 square kilometers, constituting 6.38% of the study area. In contrast, the moderate and low vulnerability zones covered 1941.33 square kilometers and 6052.51 square kilometers, respectively, making up 22.73% and 70.89% of the total area. Bonny (139.28 sq km) was ranked as the most vulnerable due to its role as an oil and gas hub. Degema (111.28 sq km) ranked second and requires urgent erosion control. Okrika and Andoni (71.73 sq km and 62.20 sq km) were third and fourth respectively. It is recommended that an advocate for the systematic approach to coastal vulnerability zoning be introduced in the study. The categorization of areas into high, moderate, and low vulnerability zones provides a standardized framework for assessing coastal regions' susceptibility to erosion. This approach can be applied to other regions to facilitate consistent vulnerability assessments.

Publisher

Sciencedomain International

Reference17 articles.

1. Kotta A, Estevez J. Coastal erosion: Environmental challenges and management strategies. Springer; 2008.

2. Ndimele P, Ofoezie I. Coastal erosion in rivers state, Nigeria: Assessment and Management. Journal of Coastal Research. 2010;26(4):687-698

3. Zhang H, Li W. Application of geographic information systems (GIS) in coastal erosion vulnerability assessment: A review. Geographical Research. 2018;37(5):951-964.

4. Ranjbar K, Smith T, Johnson R, Brown M. Mapping erosion vulnerability in the Niger Delta region using geographic information systems (GIS) and analytical hierarchy process (AHP) modeling. Environmental Monitoring and Assessment. 2018;190(7):401-415.

5. Li W, Zhang H. Continuous monitoring of coastal erosion using remote sensing techniques. Journal of Coastal Research. 2017;33(3):567-578.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3