Genetic Variability of Maize Hybrids and Populations and Interrelationships among Grain Yield and Its Related Traits under Drought and Low N Using Multivariate Analysis

Author:

Naggar A. M. M. Al-,Shafik M. M.,Musa Rabeh Y. M.,Younis A. S. M.,Anany A. H.

Abstract

One of the best biometrical methods for estimating genetic diversity among germplasm collections is multivariate analysis; it is used to study their variability and genetic relatedness in order to increase their value in plant breeding programs. The objectives of the present study were to: (i) evaluate the magnitude of genetic diversity, based on phenotypic data, among 19 maize genotypes, under drought and/or low N stressed conditions in the field, using principle component analysis (PCA) and (ii) assess the interrelationships between maize grain yield and its related traits under such stressed conditions using genotype × trait (GT) biplot analysis. An experiment was conducted in two seasons using a split-split plot design with 3 replications, where 2 irrigation regimes (well-watered and water stressed at flowering) occupied the main plots, three N rates (high N, medium N and low N) occupied the sub plots and 19 maize genotypes occupied the sub-sub plots. The genotypes were evaluated for 19 agronomic traits. Analysis of variance was performed under each of the six environments. Significant differences (p≤0.01) were recorded among the maize genotypes for all studied traits under each environment. The best genotypes for each trait were identified. Results of the GT biplot indicated that high means of 100-kernel weight (100-KW), ears/plant (EPP), ear height, days to silking, days to anthesis, plant height, and chlorophyll concentration index (CCI) under water stress (WS), kernels/row (KPR), EPP, 100-KW and CCI under low N and KPR, EPP and 100-KW under WS combined with low N environment and low values of anthesis-silking interval (ASI) under the three stressed environments could be considered selection criteria for high grain yield under respective stressed environments and for drought and/or low N tolerance. It is recommended to select for high values of KPR, EPP and 100-KW and low value of ASI in order to increase grain yield under such stressed conditions.

Publisher

Sciencedomain International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3