Active learning for computational chemogenomics

Author:

Reker Daniel12,Schneider Petra13,Schneider Gisbert1,Brown JB4

Affiliation:

1. Computer-Assisted Drug Design, Institute of Pharmaceutical Sciences, Department of Chemistry & Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland

2. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA 02139, USA

3. inSili.com GmbH, Segantinisteig 3, 8049 Zurich, Switzerland

4. Kyoto University Graduate School of Medicine, Center for Medical Education, Life Science Informatics Research Unit, Kyoto 606–8501, Japan

Abstract

Aim: Computational chemogenomics models the compound–protein interaction space, typically for drug discovery, where existing methods predominantly either incorporate increasing numbers of bioactivity samples or focus on specific subfamilies of proteins and ligands. As an alternative to modeling entire large datasets at once, active learning adaptively incorporates a minimum of informative examples for modeling, yielding compact but high quality models. Results/methodology: We assessed active learning for protein/target family-wide chemogenomic modeling by replicate experiment. Results demonstrate that small yet highly predictive models can be extracted from only 10–25% of large bioactivity datasets, irrespective of molecule descriptors used. Conclusion: Chemogenomic active learning identifies small subsets of ligand–target interactions in a large screening database that lead to knowledge discovery and highly predictive models.

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3