On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai's Conjecture

Author:

Çokoksen Tuba1ORCID,Alan Murat1ORCID

Affiliation:

1. YILDIZ TECHNICAL UNIVERSITY

Abstract

This study proves that the Diophantine equation $\left(9d^2+1\right)^x+\left(16d^2-1\right)^y=(5d)^z$ has a unique positive integer solution $(x,y,z)=(1,1,2)$, for all $d>1$. The proof employs elementary number theory techniques, including linear forms in two logarithms and Zsigmondy's Primitive Divisor Theorem, specifically when $d$ is not divisible by $5$. In cases where $d$ is divisible by $5$, an alternative method utilizing linear forms in p-adic logarithms is applied.

Publisher

Gaziosmanpasa University

Reference24 articles.

1. T. N. Shorey, R. Tijdeman, Exponential diophantine equations, Cambridge University Press, Cambridge, 1986.

2. W. Sierpinski, On the equation $3^x +4^y =5^z$, Wiadomości Matematyczne 1 (2) (1956) 194-195.

3. L. Jesmanowicz, Several remarks on pythagorean numbers, Wiadomości Matematyczne 1 (2) (1955) 196-202.

4. N. Terai, The Diophantine equation $a^x+b^y=c^z$ and $abc \neq 0$, Proceedings of the Japan Academy Series A Mathematical Sciences 70 (1994) 22-26.

5. N. Terai, T. Hibino, On the exponential Diophantine equation, International Journal of Algebra 6 (23) (2012) 1135-1146.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3