Affiliation:
1. YILDIZ TECHNICAL UNIVERSITY
Abstract
This study proves that the Diophantine equation $\left(9d^2+1\right)^x+\left(16d^2-1\right)^y=(5d)^z$ has a unique positive integer solution $(x,y,z)=(1,1,2)$, for all $d>1$. The proof employs elementary number theory techniques, including linear forms in two logarithms and Zsigmondy's Primitive Divisor Theorem, specifically when $d$ is not divisible by $5$. In cases where $d$ is divisible by $5$, an alternative method utilizing linear forms in p-adic logarithms is applied.
Reference24 articles.
1. T. N. Shorey, R. Tijdeman, Exponential diophantine equations, Cambridge University Press, Cambridge, 1986.
2. W. Sierpinski, On the equation $3^x +4^y =5^z$, Wiadomości Matematyczne 1 (2) (1956) 194-195.
3. L. Jesmanowicz, Several remarks on pythagorean numbers, Wiadomości Matematyczne 1 (2) (1955) 196-202.
4. N. Terai, The Diophantine equation $a^x+b^y=c^z$ and $abc \neq 0$, Proceedings of the Japan Academy Series A Mathematical Sciences 70 (1994) 22-26.
5. N. Terai, T. Hibino, On the exponential Diophantine equation, International Journal of Algebra 6 (23) (2012) 1135-1146.