Evaluation of hydrolytic enzymes and antifungal activity of extracellular bioactive compounds of Desmonostoc alborizicum and Neowestiellopsis persica against Plant Pathogenic Fungi

Author:

Nowruzi Bahareh,Nemati Fahimeh

Abstract

Agriculture requires the extensive use of chemical pesticides to protect crops against pests and diseases. An important mechanism for the biological control of pathogenic fungi is the breakdown of their cell walls. Cyanobacteria are found commonly growing as blooms which provides a competitive advantage to these organisms. This is one of the critical factors responsible for the production of several hydrolytic enzymes with antifungal activity. However, the role of the hydrolytic enzymes of Neowestiellopsis and Desmonostoc, which are implicated in the fungicidal activity of several biocontrol strains, has not been explored. Therefore in this study, hydrolytic enzymes (chitosanase, protease, FPase, carboxymethyl cellulose, xylanase, cellobiohydrolases and cellobiase) of two cyanobacteria strains were evaluated against a set of phytopathogenic fungi (Alternaria alternata, Fusarium solani, Fusarium oxysporum, Macrophomina phaseolina, Verticillium dahliae and Phytophthora). The results of statistical analysis showed that the level of protease, FPase and xylanase activity in Desmonostoc alborizicum cyanobacterial extract has been significantly higher than in Neowestiellopsis. Moreover, IAA hormone activity and soluble protein content were significantly higher in Desmonostoc alborizicum cyanobacterial extract. While CMCase, cellobiohydrolases, cellobiase, and chitosanase activity was significantly higher in Neowestiellopsis persica A1387 cyanobacterial extract in comparison to Desmonostoc alborizicum. Moreover, Neowestiellopsis persica was observed to be highly potent in terms of its fungicidal activity. Comparative evaluation of the activity of hydrolytic enzymes and antifungal activity revealed that such enzymes might contribute to the fungicidal activity of the cyanobacterial strains, besides other bioactive compounds, including IAA, which are established promising traits for biocontrol agents. This study is a first-time report on the production of hydrolytic enzymes by these two cyanobacteria strains, which can be potential candidates for the development of biocontrol agent(s) against selected phytopathogenic fungi.

Publisher

University of Ljubljana

Reference40 articles.

1. Abedin, R.M., Taha, H.M., 2008. Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Global Journal of Biotechnology and Biochemistry, 3, 22-31.

2. Al-Abedi, H.F., 2002. Evaluation of The Antifungal Activity of Lactobacillus Against Some isolates of Candida spp Isolated From Bovine Mycotic Mastitis, Doctoral Thesis. College of Veterinary Medicine, University of Basrah, Iran.

3. Anderson, D.M., Fensin, E., Gobler, C.J., Hoeglund, A.E., Hubbard, K.A., Kulis, D.M., Landsberg, J.H., Lefebvre, K.A., Provoost, P., Richlen, M.L., 2021. Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Harmful Algae, 102, 101975. https://doi.org/10.1016/j.hal.2021.101975

4. Barzkar, N., Sohail, M., 2020. An overview on marine cellulolytic enzymes and their potential applications. Applied Microbiology and Biotechnology, 104, 6873-6892. https://doi.org/10.1007/s00253-020-10692-y

5. Bonaterra, A., Badosa, E., Daranas, N., Frances, J., Roselló, G., Montesinos, E., 2022. Bacteria as biological control agents of plant diseases. Microorganisms, 10, 1759. https://doi.org/10.3390/microorganisms10091759

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3