Sharp bounds of logarithmic coefficient problems for functions with respect to symmetric points

Author:

Mohammed N. H.

Abstract

The logarithmic coefficients play an important role for different estimates in the theory of univalent functions.Due to the significance of the recent studies about the logarithmic coefficients, the problem of obtaining the sharp bounds for the second Hankel determinant of these coefficients, that is $H_{2,1}(F_f/2)$ was paid attention. We recall that if $f$ and $F$ are two analytic functions in $\mathbb{D}$, the function $f$ is subordinate to $F$, written $f(z)\prec F(z)$, if there exists an analytic function $\omega$ in $\mathbb{D}$ with $\omega(0)=0$ and $|\omega(z)|<1$, such that $f(z)=F\left(\omega(z)\right)$ for all $z\in\mathbb{D}$. It is well-known that if $F$ is univalent in $\mathbb{D}$, then $f(z)\prec F(z)$ if and only if $f(0)=F(0)$ and $f(\mathbb{D})\subset F(\mathbb{D})$.A function $f\in\mathcal{A}$ is starlike with respect to symmetric points in $\mathbb{D}$ iffor every $r$ close to $1,$ $r < 1$ and every $z_0$ on $|z| = r$ the angular velocity of $f(z)$about $f(-z_0)$ is positive at $z = z_0$ as $z$ traverses the circle $|z| = r$ in the positivedirection. In the current study, we obtain the sharp bounds of the second Hankel determinant of the logarithmic coefficients for families $\mathcal{S}_s^*(\psi)$ and $\mathcal{C}_s(\psi)$ where were defined by the concept subordination and $\psi$ is considered univalent in $\mathbb{D}$ with positive real part in $\mathbb{D}$ and satisfies the condition $\psi(0)=1$. Note that $f\in \mathcal{S}_s^*(\psi)$ if\[\dfrac{2zf^\prime(z)}{f(z)-f(-z)}\prec\psi(z),\quad z\in\mathbb{D}\]and $f\in \mathcal{C}_s(\psi)$ if\[\dfrac{2(zf^\prime(z))^\prime}{f^\prime(z)+f^\prime(-z)}\prec\psi(z),\quad z\in\mathbb{D}.\]It is worthwhile mentioning that the given bounds in this paper extend and develop some related recent results in the literature. In addition, the results given in these theorems can be used for determining the upper bound of $\left\vert H_{2,1}(F_f/2)\right\vert$ for other popular families.

Publisher

Ivan Franko National University of Lviv

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3