Abstract
In the paper, we study and compare relative $(k,n)$ Valiron defect with the relative Nevanlinna defect for meromorphic function where $k$ and $n$ are both non negative integers on annuli. The results we proved are as follows \\1. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ and $\sum\nolimits_{a\not=\infty}^{}\delta_{0}(a,f)+\delta_{0}(\infty,f)=2.$Then\centerline{$\displaystyle\lim\limits_{R\rightarrow\infty}^{}\frac{T_{0}(R,f^{(k)})}{T_{0}(R,f)}=(1+k)-k\delta_{0}(\infty,f).$}\noi 2. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$, $b$ and $c$ are three distinct complex numbers, then for any two positive integer $k$ and $n$ \smallskip\centerline{$\displaystyle 3 _{R}\delta_{0(n)}^{(0)}(a,f)+2 _{R}\delta_{0(n)}^{(0)}(b,f)+3 _{R}\delta_{0(n)}^{(0)}(c,f)+5 _{R}\Delta_{0(n)}^{(k)}(\infty ,f)\leq 5 _{R}\Delta_{0(n)}^{(0)}(\infty,f)+5 _{R}\Delta_{0(n)}^{(k)}(0,f).$} \noi 3. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$, $b$ and $c$ are three distinct complex numbers, then for any two positive integer $k$ and $n$\smallskip\centerline{$\displaystyle_{R}\delta_{0(n)}^{(0)}(0,f)+_{R}\Delta_{0(n)}^{(k)}(\infty,f)+_{R}\delta_{0(n)}^{(0)}(c,f)\leq _{R}\Delta_{0(n)}^{(0)}(\infty,f)+2_{R}\Delta_{0(n)}^{(k)}(0,f).$} \noi 4. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$ and $d$ are two distinct complex numbers, then for any two positive integer $k$ and $p$ with $0\leq k\leq p$\smallskip\centerline{$\displaystyle_{R}\delta_{0(n)}^{(0)}(d,f)+_{R}\Delta_{0(n)}^{(p)}(\infty,f)+_{R}\delta_{0(n)}^{(k)}(a,f)\leq _{R}\Delta_{0(n)}^{(k)}(\infty,f)+_{R}\Delta_{0(n)}^{(p)}(0,f)+_{R}\Delta_{0(n)}^{(k)}(0,f),$} \noi where $n$ is any positive integer.\\5.Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ . Then for any two positive integers $k$ and $n$,\smallskip\centerline{$\displaystyle_{R}\Delta_{0(n)}^{(0)}(\infty,f)+_{R}\Delta_{0(n)}^{(k)}(0,f) \geq _{R}\delta_{0(n)}^{(0)}(0,f)+_{R}\delta_{0(n)}^{(0)}(a,f)+_{R}\Delta_{0(n)}^{(k)}(\infty,f),$}\noi where $a$ is any non zero complex number.
Publisher
Ivan Franko National University of Lviv
Reference33 articles.
1. T.B. Cao, H.X. Yi, H.Y. Xu, On the multiple values and uniqueness of meromorphic functions on annuli, Compute. Math. Appl., 58 (2009), 1457–1465.
2. Y.X. Chen, Z.J. Wu, Exceptional values of meromorphic functions and of their derivatives on annuli, Ann. Polon. Math., 105 (2012), 154–165.
3. A. Fernandez, On the value distribution of meromorphic function in the punctured plane, Mat. Stud., 34 (2010), 136–144.
4. W.K. Hayman, Meromorphic functions, Oxford: Oxford University Press, 1964.
5. A.Ya. Khrystiyanyn, A.A. Kondratyuk, On the Nevanlinna theory for meromorphic functions on annuli. I, Mat. Stud., 23 (2005), №1, 19–30.