Abstract
We investigate a few special decompositions in arbitrary rings and matrix rings over indecomposable rings into nilpotent and idempotent elements. Moreover, we also define and study the nilpotent sum trace number of nilpotent matrices over an arbitrary ring. Some related notions are explored as well.
Publisher
Ivan Franko National University of Lviv
Reference29 articles.
1. S. Breaz, G. Calugareanu, Sums of nilpotent matrices, Lin. & Multilin. Algebra, 65 (2017), 67–78.
2. S. Breaz, G. Calugareanu, P. Danchev, T. Micu, Nil-clean matrix rings, Linear Algebra & Appl., 439 (2013), №10, 3115–3119.
3. P.V. Danchev, Feebly invo-clean unital rings, Ann. Univ. Sci. Budapest (Sect. Math.), 60 (2017), 85–91.
4. P.V. Danchev, Feebly nil-clean unital rings, Proc. Jangjeon Math. Soc., 21 (2018), №1, 155–165.
5. P.V. Danchev, Rings whose elements are represented by at most three commuting idempotents, Gulf J. Math., 6 (2018), №2, 1–6.