Improved Hybrid Rocket Performance by Additively Manufactured Gel-Infused Solid Fuels

Author:

Meier James1,Reynolds John1,Whalen Sean1,Patel Jaimin1,Bortner Michael J.1,Young Gregory1

Affiliation:

1. Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Abstract

In this study, additively manufactured polypropylene solid fuel grains were infused with gels as a means of significantly altering the fuel burning rates in a laboratory-scale hybrid rocket motor using gaseous oxygen as the oxidizer. Gels based on Jet-A were created using both particulate (fumed silica, microaluminum, and nanoaluminum) and polymeric (paraffin wax) gellants. The rheological behavior of the gels was characterized in order to determine the relationship between melt layer viscosity, viscoelastic properties, and combustion performance. The performance of the gel-infused grains was compared to a traditional center-perforated fuel grain. Rocket motors fired with gel-infused grains exhibited pressure increases of greater than 40%. Gel-infused fuel grains demonstrated regression rate enhancements up to 90% higher than the baseline. When the oxidizer-to-fuel ratio was maintained near stoichiometric or lean conditions, [Formula: see text] efficiencies of the gel-infused grains were similar to that of the baseline, indicating thorough combustion of the gels. The results of this study indicate that the gel-infused concept may allow for the benefit of additional fuel surface area from more exotic grain types without sacrificing volumetric loading of the fuel.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3