Aerodynamic Optimization and Fuel Burn Evaluation of a Transonic Strut-Braced-Wing Single-Aisle Aircraft

Author:

Chau Timothy1ORCID,Zingg David W.1

Affiliation:

1. University of Toronto, Toronto, Ontario M3H 5T6, Canada

Abstract

This paper presents an assessment of the potential fuel burn savings offered by the transonic strut-braced-wing configuration within the single-aisle class of aircraft relative to a modern conventional tube-and-wing aircraft through aerodynamic shape optimization based on the Reynolds-averaged Navier–Stokes equations. A representative strut-braced-wing aircraft is first developed through conceptual multidisciplinary design optimization based on the Airbus A320neo, with current technology levels assumed. A concept for the conventional tube-and-wing configuration is also developed to represent the Airbus A320neo as a performance baseline. Single-point aerodynamic shape optimization is then performed on wing–body–tail models of each aircraft to address aerodynamic design challenges and to provide more accurate performance estimates. Results indicate that shock formation can be mitigated from the wing–strut junction of the strut-braced wing at Mach 0.78 and a relatively high design lift coefficient of 0.750, providing an 8.2% reduction in block fuel over a 1000 n mile nominal mission when compared to the conventional tube-and-wing aircraft. Multipoint aerodynamic shape optimization is then performed to build toward a more credible estimate of fuel burn performance, with results showing a reduction in the fuel burn savings to 7.8% at the nominal design point relative to the conventional tube-and-wing aircraft to maintain a 7.6–8.0% improvement over the envelope of operating conditions, which includes design points at even higher Mach numbers and lift coefficients. These results demonstrate the viability of the transonic strut-braced-wing configuration for transport aircraft within the single-aisle class and its potential for reducing commercial fleet fuel burn.

Funder

University of Toronto

Natural Sciences and Engineering Research Council of Canada

Government of Ontario

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3