Leveraging Machine Learning to Improve Adaptive Primitive-Based Motion Planning

Author:

Choi Kevin S.1,Goddard Zachary C.1,Deal Samuel J.1,Mazumdar Anirban1ORCID,Williams Kyle2ORCID

Affiliation:

1. Georgia Institute of Technology, Atlanta, Georgia 30332

2. Sandia National Laboratories, Albuquerque, New Mexico 87123

Abstract

This paper introduces a new approach for adding replanning capabilities to the maneuver automaton. We call this approach “maneuver interruption.” Maneuver interruption enables replanning by identifying maneuver segments that are dynamically similar to the current vehicle state. As a result, the vehicle can exit a maneuver if new information emerges or the environment changes. We use machine learning to enhance the performance of maneuver interruption. Specifically, we examine how supervised learning can predict dynamic similarity and utilize the learned network to enable maneuver interruption. A variety of models are compared for their ability to quantify the feasibility of a maneuver-to-maneuver transition. The multilayer perceptron is found to be the most effective at this task and was therefore selected for generating maneuver-to-maneuver transitions for replanning. Additionally, we use Monte Carlo methods and pruning to reduce the transition library size by an order of magnitude with minimal loss in performance. We test learning-enhanced maneuver interruption on obstacle evasion tasks with a medium-fidelity ZOHD Drift flight dynamics model. On randomly generated obstacle fields, maneuver interruption is demonstrated to enable longer collision-free flights at a minor cost to control performance.

Funder

Sandia National Laboratories

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3