Investigating the Chemical Stability of Electrospray Plumes During Particle Collisions

Author:

Bendimerad Rafid1ORCID,Tahsin Abu Taqui Md1,Yonas Adam1,Colucci Caleb1,Petro Elaine M.1

Affiliation:

1. Cornell University, Ithaca, New York 14850

Abstract

Electrospray thrusters fulfill the main propulsion requirements for long-term small-satellite missions. However, the molecules present in the plume are susceptible to collisions, chemical reactions, and fragmentation, which may introduce different new species with various mass-to-charge ratios inside the plume. Prediction of the byproducts that appear upon collisions is of prime importance to predicting the evolution of the plume and estimating the performance and the lifetime expectancy of the thruster. In this work, we use molecular dynamics simulations to investigate monomer–neutral collisions at different impact configurations, impact energies, and impact parameters, and we provide the mass spectra of the resulting species. We predict that 1) collisions within a center-of-mass distance of 6 Å can result in momentum exchange and molecular fragmentation, 2) higher-energy impacts produce more byproducts, and 3) heavy molecules (e.g., 1-ethyl-3-methylimidazolium [EMI] and [Formula: see text]) are more likely to result from weak collisions ([Formula: see text]), whereas light molecules (e.g., H, F, and [Formula: see text]) are more likely to result from strong collisions. Collisional fragmentation is shown to negatively affect key performance indicators, including reductions in thrust, specific impulse, and propulsive efficiency. This phenomenon potentially accounts for the observed discrepancies in experimental measurements of current and mass loss rates.

Funder

AFRL/AFOSR

Space Technology Mission Directorate

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3