Bistable Deployable Composite Booms with Parabolic Cross Sections

Author:

Lee Andrew J.1ORCID,Fernandez Juan M.2,Daye Jacob G.1

Affiliation:

1. North Carolina State University, Raleigh, North Carolina 27695

2. NASA Langley Research Center, Hampton, Virginia 23681

Abstract

The stable extended and coiled states of thin-shelled composite booms with parabolic cross sections are investigated in this paper. These conic shapes potentially offer greater stiffness properties when compared to circular cross sections, which is critical for improving the load-bearing performance of deployed booms. Inducing bistability through composite layups in parabolic booms would allow for controllable self-deployment due to a less energetic coiled state when compared to monostable booms. An inextensional analytical model is used to predict the stable coiled diameters of tape spring and collapsible tubular mast (CTM) booms with parabolic cross sections. The parabolic section is discretized into circular segments using biarc spline interpolation, which allows them to be integrated into the strain energy minimization procedure used to obtain the equilibrium states. When the parabolic booms are parametrically compared against circular booms with identical layups, flattened height, and mass, the former are found to generally have better stiffness performance while being less efficient in stowed volume, as evidenced by larger coiled diameters. Analytical coiled diameters and their strain energy are verified with finite element simulations for an optimal parabolic tape spring and CTM booms. Additional validation of the parabolic tape spring’s coiled diameter is provided by experimental measurements of boom specimens.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3