Synergistic Numerical and Experimental Investigations of Dynamic Stability of a Lifting Capsule

Author:

Nagai Shinji,Hashimoto Atsushi,Koga Seigo,Hidaka Akiko,Murakami Keiichi,Tagai Rie,Nakamura Ryo,Watanabe Yasuhide,Hayashi Kenji1

Affiliation:

1. Ryoyu Systems, Ltd., Nagoya 455-8515, Japan

Abstract

The dynamic stability of a reentry lifting capsule with a large aftbody was studied by synergistic experimental and numerical investigations. Free-to-rotate wind-tunnel tests showed that self-induced pitch oscillations depended on the Mach number, Reynolds number, and surface roughness. The experiment provided the amplitudes and frequencies of oscillations for numerical simulations in prescribed motions. Both data reduction methods for the damping coefficient are presented, and the time-series results of both methods are compared. The validated numerical simulations enabled detailed visualization of the separated flow on the side surface of the aftbody to investigate the effects of flow separation and attachment on the dynamic stability and the effect of sting interference. The dynamic characteristics observed in a postflight test with a scaled model of the recovered capsule agreed with those of the reconstructed flight in spite of deceleration effects. Wind-tunnel testing and numerical simulations as well as their mutually validated investigations provided sufficient information to fly the small lifting capsule.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3