Research on Fuel-Saving and Environmentally Friendly Approach Trajectory Considering Air Traffic Management Intention

Author:

Jie Yuan1ORCID,Yang Pei1,Yuxue Ge1ORCID

Affiliation:

1. Northwestern Polytechnical University, 710072 Xi’an, People’s Republic of China

Abstract

Civilian aviation continues to contribute significantly to the total economic and environmental impact of aeronautics. Reduction of the fuel burn and environmental impact of civilian aviation is critical to the overall sustainability of the industry, and it can be accomplished, in part, through the optimization of arrival and approach procedures. This paper proposes the development of a method for measuring the degree of compliance of optimized approach trajectories with air traffic management (ATM) intentions, using an intention compliance level (ICL) indicator. Based on fuzzy logic, this measure reflects the extent to which approach trajectories satisfy the required time-of-arrival constraints. This research demonstrates an approach trajectory strategy that maximizes the ICL, maintains compliance with ATM intent, and achieves efficiency goals inclusive of reduced fuel consumption through selective airspeed changes. Simulations on the Airbus A320 indicate that achieving the optimal trajectory and flight parameters can significantly guide trajectory-based operations to minimize airline economic costs and reduce environmental impact while complying with ATM commands. In this paper we will organize the data as follows. The Introduction will summarize past research as a means of identifying the gaps that this research seeks to bridge and introduce the premise of our findings. Section  II proposes the concept of ICL to evaluate the relationship between flight time and the required time of arrival and establishes an en-route descent trajectory model. Section  III constructs the optimization strategy based on simulated annealing genetic algorithm (SAGA), evaluates the effectiveness of the algorithm, and verifies the contributions of the ICL in a basic scenario. Section  IV analyzes the impacts of various factors on the optimization results in a complex scenario.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3