Affiliation:
1. University of Kentucky, Lexington, Kentucky 40506
Abstract
A material response code is strongly coupled with a radiative transfer equation (RTE) to evaluate the effect of a spectrally resolved heat flux on the thermal response of a heat shield. A [Formula: see text] approximation model of RTE is used to account for radiation heat transfer within the material. First, the RTE model is verified by comparing the numerical results with the analytical solution. Next, the coupling scheme is verified by comparing the temperature histories computed by the pure conduction scheme with the ones computed by conduction coupled with radiative emission. The verification study is conducted using test cases from the literature (radiant heating, arc jet heating, and space shuttle entry) as well as on a 3D Block, a 2D IsoQ sample, and the Stardust Return Capsule. The verification results are satisfactory for all cases. Thus, the verification results indicate that the coupling approach can accurately simulate the thermal response of the material. The coupling scheme was then used to simulate a laser heating experiment that studied the impact of spectral radiative heat transfer on ablative material. The results from the laser ablation simulations exhibit a behavior analogous to the experimental observations, indicating the importance of spectral radiative flux on the material response.
Funder
National Aeronautics and Space Administration
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献