1. [%] % [%] Experiment - 0.221 -0.333 - CoarseMesh 0.25 73 22514 0.247 -0.401 11.8 20.4 MediumMesh 0.25 109 26746 0.239 -0.384 8.1 15.4 FineMesh 0.25 359 94857 0.233 -0.374 5.4 12.3
2. Normalizationofthecoordinateaxiswasdonewithrespecttothecharacteristiclengthsofthespoilerplateandis appliedtoscaletheaxisrelativetothecharacteristiclengthsoftheinclinedspoiler. Theequationsofthenormalized lengths∗,∗and∗areshowninEq. 1-3. Tosimplifythereferencelocationofthedifferentflowfeatureswithrespect totheinclinedspoilerplate,theoriginoftheaxiswasplacedonthesymmetryplaneoftherotationalaxisofthespoiler, alongtheleadingedge. Theaxessystemisshown in Figure 3.
3. MethodologyDLExperiment 0.221-0.014 -0.333-0.026 ProLBTM0.233 -0.374
4. The flow topology around the inclined plate deflected at a deflection angle of 30◦is shown in the Q-criterion iso-volumeinFigure16a. Similartowhatisobservedinthepresenceofjunctionflowdescribedin[25-28],thepresence of the wall-mounted plate generates an adverse pressure gradient upstream of the plate. This causes the incoming boundarylayertoseparateupstreamofthehingeoftheplate,formingahorseshoevortexstructure,whichisobservedto continue downstream around theside edgesof the spoilerup to thetrailing edge of thebase mounting plate. Here, it mixeswiththeseparatedbluffbodywakegeneratedbytheinclinedspoilerplate. Thestrengthofthehorseshoevortexis observed to varywith thedeflectionangle, asshown from the on-surface mean pressure analysis previously presented by Parnis andAngland[14].