Aero-Propulsive Modeling for Propeller Aircraft Using Flight Data

Author:

Simmons Benjamin M.1ORCID,Gresham James L.1,Woolsey Craig A.1ORCID

Affiliation:

1. Virginia Tech, Blacksburg, Virginia 24061

Abstract

This paper describes methods to identify an integrated propulsion–airframe aerodynamic model and a decoupled propulsion model for fixed-wing aircraft with propellers using flight data. Propulsion aerodynamics and airframe aerodynamics for propeller aircraft are usually modeled separately, which fails to describe unavoidable interaction effects and propeller performance deviations when integrated on an aircraft. Two novel flight test system identification approaches are presented to develop flight dynamics models with improved characterization of propeller aerodynamics compared to conventional methods. Orthogonal phase-optimized multisine inputs are applied to both the control surfaces and propulsion system to generate data with high-quality information content for model identification. Propulsion explanatory variables derived from propeller aerodynamics theory combined with traditional aircraft modeling variables yield accurate aero-propulsive modeling results and provide propeller performance estimates, which are compared to isolated propeller wind tunnel data. An assessment of model adequacy using flight maneuvers withheld from model identification indicates that the models have good prediction capability. The paper describes application of these methods to a small unmanned aircraft, but the methods are generalizable to many propeller-driven aircraft.

Funder

United States Air Force Test Pilot School

National Aeronautics and Space Administration

Langley Research Center

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3