Toward More General Turbulence Models via Multicase Computational-Fluid-Dynamics-Driven Training

Author:

Fang Yuan1,Zhao Yaomin2,Waschkowski Fabian1,Ooi Andrew S. H.1,Sandberg Richard D.1

Affiliation:

1. The University of Melbourne, Melbourne, Victoria 3010, Australia

2. Peking University, 100871 Beijing, People’s Republic of China

Abstract

The accuracy of machine-learned turbulence models often diminishes when applied to flow cases outside the training data set. In an effort to improve the predictive accuracy of data-driven models for an expanded set of cases, an extension of a computational fluid dynamics (CFD)-driven training framework consisting of three key steps is proposed. Firstly, a list of candidate flow-related parameters is selected to supplement Pope’s general tensor basis hypothesis. Secondly, modeling an additional production term may benefit the overall predictions in certain situations. Finally, the Reynolds-averaged Navier–Stokes (RANS) evaluations of candidate models are performed on several different flows simultaneously during the model training iterations. Five free-shear and five wall-bounded flow cases are chosen to train or test data-driven turbulence models. It is shown that the machine-learned models from the present multicase CFD-driven framework can significantly improve the predictive accuracy for the test cases where the baseline RANS results showed significant error from the ground truth. Meanwhile, for cases in which the baseline produced good results, the new models do not perform worse. Further analysis shows that the new models can adapt to opposite trends of turbulent diffusion required for the different cases with a common correction. Moreover, the trained models can be simplified and still achieve similar improvement as the whole expressions.

Funder

Australian Research Council

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Reference56 articles.

1. DuraisamyK.SpalartP. R.RumseyC. L. “Status, Emerging Ideas and Future Directions of Turbulence Modeling Research in Aeronautics,” NASA TM-2017-219682, 2017.

2. Some Recent Developments in Turbulence Closure Modeling

3. Turbulence Modeling in the Age of Data

4. Machine Learning for Fluid Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3