Polynomial Guidance for Impact-Time Control Against Maneuvering Targets

Author:

Li Haojian1ORCID,Liu Yuanhe1ORCID,Li Kebo1ORCID,Liang Yan’gang1

Affiliation:

1. National University of Defense Technology, 410072 Changsha, People’s Republic of China

Abstract

To address the issue of intercepting maneuvering targets at a specific time, a polynomial guidance method for impact-time control is proposed in this paper. Based on the relative virtual framework and the classical differential geometry curve theory, such method is divided into two parts: 1) the design of the relative trajectory-length-control (RTLC) guidance law against virtual stationary targets, and 2) the design of the prediction algorithms based on the guidance law or its characteristics. The former realizes RTLC, and the latter establishes the relationship between the desired relative trajectory length-to-go and the desired time-to-go, thus implementing impact-time control. Furthermore, based on the analytical properties of the guidance law in the relative arc-length domain, its performance, characteristics, and allowable impact time are analyzed. Finally, the effectiveness of the proposed guidance method and the validity of the theoretical findings are verified by numerical simulations results.

Funder

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Near-Optimal Impact-Vector-Control Guidance;Journal of Guidance, Control, and Dynamics;2024-09

2. Control-Barrier-Function-Based Cooperative Guidance with Nonuniform Field of View and Input Constraints;J GUID CONTROL DYNAM;2024

3. Nonlinear Optimal Impact - Time-Control Guidance Against Maneuvering Targets;2024 32nd Mediterranean Conference on Control and Automation (MED);2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3