Noise Control of Blunt Flat-Plate Using Slit and Dielectric Barrier Discharge Plasma

Author:

Yan Xicai1,Zhang Yaowen1,Li Yong1ORCID

Affiliation:

1. Wenzhou University, 325035 Wenzhou, People’s Republic of China

Abstract

This paper investigates the combination of a slit at the blunt trailing edge of the flat plate and dielectric barrier discharge plasma to control the vortex shedding of the plate and its associated tonal noise. The noise and flow characteristics of the plate were measured using a far-field microphone array and the particle image velocimetry technique, respectively. The results show that the vortex shedding and the tonal noise can be significantly suppressed by the slit alone, with an average noise reduction of approximately 10 dB in the test Reynolds number. In addition, installing a plasma actuator inside the slit further suppresses the vortex shedding and reduces tonal noise. However, the additional control efficiency of the plasma decreases with increasing wind speeds, with a further 8 dB reduction at a wind speed of [Formula: see text] (corresponding to an inducing blowing rate BR of 4.5%). However, only an additional 1.5 dB noise reduction is achieved at [Formula: see text] ([Formula: see text]). The particle image velocimetry snapshots were analyzed by proper orthogonal decomposition. The measurements clearly show the variation in vortex shedding at the trailing edge of the plate, revealing the underlying flow mechanisms that lead to the observed noise variations and frequency changes.

Funder

National Natural Science Foundation of China

The Key Laboratory for Aerodynamic Noise Control

China Aerodynamic Research & Development Center

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3