Sparse Flow Sensor Placement Optimization for Flight-by-Feel Control of 2D Airfoils

Author:

Hollenbeck Alex C.1ORCID,Grandhi Ramana1ORCID,Hansen John H.1,Pankonien Alexander M.2

Affiliation:

1. Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433

2. Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433

Abstract

This research introduces the Sparse Sensor Placement Optimization for Prediction algorithm and explores its use in bioinspired flight-by-feel control system design. Flying animals have velocity-sensing structures on their wings and are capable of highly agile flight in unsteady conditions, a proof-of-concept that artificial flight-by-feel control systems may be effective. Constrained by size, weight, and power, a flight-by-feel sensory system should have the fewest optimally placed sensors which capture enough information to predict the flight state. Flow datasets, such as from computational fluid dynamics, are discrete, often highly discontinuous, and ill-suited for conventional sensor placement optimization techniques. The data-driven Sparse Sensor Placement Optimization for Prediction approach reduces high-dimensional flow data to a low-dimensional sparse approximation containing nearly all of the original information, thereby identifying a near-optimal placement for any number of sensors. For two or more airflow velocity magnitude sensors, this algorithm finds a placement solution (design point) which predicts angle of attack of airfoils to within 0.10° and ranks within the top 1% of all possible design points validated by combinatorial search. The scalability and adaptability of this algorithm is demonstrated on several 2D model variations in clean and noisy data, and model sensitivities are evaluated and compared against conventional optimization techniques. Applications for this sensor placement algorithm are explored for aircraft design, flight control, and beyond.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3