Deep Q-Learning for Decentralized Multi-Agent Inspection of a Tumbling Target

Author:

Aurand Joshua1,Cutlip Steven1,Lei Henry1,Lang Kendra1,Phillips Sean2

Affiliation:

1. Verus Research, Albuquerque, New Mexico 87110

2. Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87123

Abstract

As the number of on-orbit satellites increases, the ability to repair or de-orbit them is becoming increasingly important. The implicitly required task of on-orbit inspection is challenging due to coordination of multiple observer satellites, a highly nonlinear environment, a potentially unknown or unpredictable target, and time delays associated with ground-based control. There is a critical need for autonomous, robust, decentralized solutions. To achieve this, we consider a hierarchical, learned approach for the decentralized planning of multi-agent inspection of a tumbling target. Our solution consists of two components: a viewpoint or high-level planner trained using deep reinforcement learning, and a low-level planner that will handle the point-to-point maneuvering of the spacecraft. Operating under limited information, our trained multi-agent high-level policies successfully contextualize information within the global hierarchical environment and are correspondingly able to inspect over 90% of nonconvex tumbling targets, even in the absence of additional agent attitude control.

Funder

Air Force Research Laboratory

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3