Development of a Supervised Learning Model to Predict Permeability of Porous Carbon Composites

Author:

Mohan Ramu Vijay B.1,Chacon Luis1,Brewer Cameron1,Poovathingal Savio J.1ORCID

Affiliation:

1. University of Kentucky, Lexington, Kentucky 40506

Abstract

Predicting the permeability of porous thermal protection system (TPS) materials is essential for understanding their performance during high-speed entry. High-fidelity formulation of Klinkenberg permeability for TPS materials is intractable because unique parameters are needed at each temperature, for various gaseous species, and at every stage of decomposition of resin in the porous material. A supervised learning model based on support vector machine is developed to predict the permeability of TPS materials and is found to be a robust technique to capture the complex relationship between temperature, average pressure, porosity, and permeability of the material. The ability of different gaseous species to permeate through the material is captured through the supervised learning model by constructing an input variable called species identifier, which relates the molecular weight and viscosity of the gaseous species. The model is also extended to capture the permeability of the full composite, which includes both the fibers and the resin. It is demonstrated that the new model captures the nonlinear relationship between permeability and degree of char during the decomposition of the resin in the porous material. The supervised learning model of the physical simulations offers a robust approach for predicting permeability of porous materials in both continuum and noncontinuum flow regimes.

Funder

National Aeronautics and Space Administration

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3