Vision-Based Virtual Simulation Platform for Planetary Rovers

Author:

Yang LiORCID,Han Chunxiu,Liu Chuankai,He Ximing

Abstract

In order to evaluate the feasibility of planetary exploration missions, it is imperative to construct planetary terrain environments on the ground. Nevertheless, the implementation of this method is characterized by time-consuming and challenging factors. By contrast, resorting to simulation approaches represents a cost-effective and high-efficiency alternative, which can facilitate the simulation validation of planetary rover exploration missions in an effective manner. In this paper, a modular planet rover simulation platform is proposed; by building and overlaying multiple feature layers corresponding to the surface of the planet, we realize the simulation of high-resolution fine terrain and through adjusting the terrain parameters to meet the needs of different simulated terrain. The experimental results show that we have built a scene to satisfy the requirements of visual effects and physically realistic characteristics of simulation. Using an improved PatchMatch stereomethod to recover images captured real time by a planetary rover navigation camera in a virtual environment provided more complete three-dimensional terrain data for subsequent simulation validation of local path planning. Finally, a simulation environment that combines high-fidelity visual effects and kinematic characteristics supports visualizing the simulation platform: we propose a path planning method using global planning combined with local obstacle avoidance, and we obtain the optimal path that satisfies the kinematic constraints.

Funder

Key Laboratory of Space Flight Dynamics Technology

Key Research and Development Projects in Zhejiang Province

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

Reference8 articles.

1. The synthesis and rendering of eroded fractal terrains

2. HuttonR. E.EvensonA. “Lunar Surface Models NASA Space Vehicle Design Criteria (Environment),” NASA SP-8023, NASA, Washington, DC, NASA Marshall Space Flight Center, Huntsville, AL, May 1969, p. 60, (70N18901).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3