Code-to-Code Benchmark for Simulation Tools Based on the Unsteady Vortex-Lattice Method

Author:

Verstraete Marcos L.,Ceballos Luis R.ORCID,Hente Christian1,Roccia Bruno A.ORCID,Gebhardt Cristian G.

Affiliation:

1. Leibniz University of Hannover, 30167 Hannover, Germany

Abstract

Reliable aerodynamic and aeroelastic simulations of advanced aeronautical/mechanical systems require us to predict flow-induced forces as accurately as possible. Nowadays, computational fluid dynamic techniques are quite popular, but at an overwhelming computational cost. Consequently, methods like the unsteady vortex-lattice method (UVLM) became the workhorses for many simulation environments. Then, numerous UVLM-based codes using diverse numerical schemes, enhanced by several add-ons and implemented following different programming paradigms, were available in the literature. However, there is no set of benchmark cases intended for the systematic verification of those codes relying on the UVLM. Therefore, we provide six fully reproducible benchmark cases that can be used for such an end. We also describe two in-house UVLM-based codes that are well suited for aerodynamic simulations and for being encapsulated as an aerodynamic engine within partitioned aeroelastic simulation schemes. Because both codes follow radically different implementation philosophies, these represent excellent candidates to undergo the series of benchmark cases proposed. The work is completed by providing a valuable dataset and comparison criteria to measure to what extent two or more codes are in agreement. Along this path, for very first time, we use a comparison strategy to contrast free-wake methods based on the Hausdorff distance.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

Reference40 articles.

1. JonkmanJ. M.BuhlM. L. FAST User’s Guide, Vol. 365, National Renewable Energy Lab., Golden, CO, 2005.

2. Numerical simulations of the aerodynamic behavior of large horizontal-axis wind turbines

3. Low-Speed Aerodynamics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3